(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
rec(up(x)) →+ up(rec(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / up(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
rec, sent, no, top, check

They will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top

(8) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

The following defined symbols remain to be analysed:
sent, rec, no, top, check

They will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
sent(gen_bot:up3_0(+(1, 0)))

Induction Step:
sent(gen_bot:up3_0(+(1, +(n5_0, 1)))) →RΩ(1)
up(sent(gen_bot:up3_0(+(1, n5_0)))) →IH
up(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

The following defined symbols remain to be analysed:
rec, no, top, check

They will be analysed ascendingly in the following order:
rec < top
rec < check
no < check
check < top

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)

Induction Base:
rec(gen_bot:up3_0(+(1, 0)))

Induction Step:
rec(gen_bot:up3_0(+(1, +(n167_0, 1)))) →RΩ(1)
up(rec(gen_bot:up3_0(+(1, n167_0)))) →IH
up(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

The following defined symbols remain to be analysed:
no, top, check

They will be analysed ascendingly in the following order:
no < check
check < top

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)

Induction Base:
no(gen_bot:up3_0(+(1, 0)))

Induction Step:
no(gen_bot:up3_0(+(1, +(n160337_0, 1)))) →RΩ(1)
up(no(gen_bot:up3_0(+(1, n160337_0)))) →IH
up(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

The following defined symbols remain to be analysed:
check, top

They will be analysed ascendingly in the following order:
check < top

(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)

Induction Base:
check(gen_bot:up3_0(+(1, 0)))

Induction Step:
check(gen_bot:up3_0(+(1, +(n160701_0, 1)))) →RΩ(1)
up(check(gen_bot:up3_0(+(1, n160701_0)))) →IH
up(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(19) Complex Obligation (BEST)

(20) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

The following defined symbols remain to be analysed:
top

(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(22) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(30) BOUNDS(n^1, INF)

(31) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(33) BOUNDS(n^1, INF)

(34) Obligation:

TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)

Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up

Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(36) BOUNDS(n^1, INF)